TNPSC MATERIAL
x2 – 2x + 1 = 3 + 2 + 2√6
⇒ x2 – 2x + 1 - 5 = 2√6
⇒ x2 – 2x - 4 = 2√6
On squaring again,
(x2 – 2x - 4)2 = (2√6)2
⇒ x4 + 4x2 + 16 – 4x3 + 16x - 8x2 = 24
⇒ x4 – 4x3 - 4x2 + 16x - 8x2 - 8 = 0
⇒ 2x4 – 8x3 - 8x2 + 32x - 16 = 0
∴ 2x4 – 8x3 - 5x2 + 32x - 16 + 3x2 - 6x - 12
= 0 + 3 (x2 – 2x – 4) = 3 × 2√6
Required answer = 6√6
= a4 + b4 – 2a2b2 – a3 – b3 + ab
= (a + b)2 (a – b)2 – (a + b) (a2 – ab + b2) + ab
= (a – b)2 – a2 + ab – b2 + ab
[∵ a + b = 1]
= (a – b)2 – (a – b)2 = 0
= (a – b) {(a + b)2 – ab}
On comparing with
p3 – q3 = (p – q) {(p + q)2 – x pq)}, x
= m3 + n3 + 3mn(m + n) [∵ m + n =1]
= (m + n)3 = 1
∴ bc (b + c) + ca (c + a) + ab (a + b) + 3abc
= bc (b + c) + abc + ca (c + a) + abc + ab (a + b) + abc
= bc (a + b + c) + ca (a + b + c) + ab (a + b + c)
= (a + b + c) (bc + ca + ab)
= 6 × 11 = 66
கணிதம் பயிற்சி வினாவிடை!
then the value of (2x4 – 8x3 + 26x – 28) is
x = 1 + √2 + √3
⇒ x - 1 = √3 + √2
On squaring both sides ,
⇒ x - 1 = √3 + √2
On squaring both sides ,
x2 – 2x + 1 = 3 + 2 + 2√6
⇒ x2 – 2x + 1 - 5 = 2√6
⇒ x2 – 2x - 4 = 2√6
On squaring again,
(x2 – 2x - 4)2 = (2√6)2
⇒ x4 + 4x2 + 16 – 4x3 + 16x - 8x2 = 24
⇒ x4 – 4x3 - 4x2 + 16x - 8x2 - 8 = 0
⇒ 2x4 – 8x3 - 8x2 + 32x - 16 = 0
∴ 2x4 – 8x3 - 5x2 + 32x - 16 + 3x2 - 6x - 12
= 0 + 3 (x2 – 2x – 4) = 3 × 2√6
Required answer = 6√6
💧💧💧💧💧💧💧💧💧💧💧💧
If a + b = 1,
then a4 + b4 – a3 – b3 – 2a2b2 + ab
is equal to ...
a4 + b4 – a3 – b3 – 2a2b2 + ab
= a4 + b4 – 2a2b2 – a3 – b3 + ab
= (a + b)2 (a – b)2 – (a + b) (a2 – ab + b2) + ab
= (a – b)2 – a2 + ab – b2 + ab
[∵ a + b = 1]
= (a – b)2 – (a – b)2 = 0
💧💧💧💧💧💧💧💧💧💧💧💧
If p3 – q3 = (p – q) {(p + q)2 – x p q}
then the value of x is
a3 − b3 = (a – b) (a2 + ab + b2)
= (a – b) {(a + b)2 – ab}
On comparing with
p3 – q3 = (p – q) {(p + q)2 – x pq)}, x
= 1
💧💧💧💧💧💧💧💧💧💧💧💧
If m + n = 1, then the value of m3 + n3 + 3mn is equal to
m3 + n3 + 3mn
= m3 + n3 + 3mn(m + n) [∵ m + n =1]
= (m + n)3 = 1
💧💧💧💧💧💧💧💧💧💧💧💧
If a + b + c = 6 and ab + bc + ca = 11,
then the value of
bc (b + c) + ca (c + a) + ab (a + b) + 3abc is
a + b + c = 6 and ab + bc + ca = 11
∴ bc (b + c) + ca (c + a) + ab (a + b) + 3abc
= bc (b + c) + abc + ca (c + a) + abc + ab (a + b) + abc
= bc (a + b + c) + ca (a + b + c) + ab (a + b + c)
= (a + b + c) (bc + ca + ab)
= 6 × 11 = 66
💧💧💧💧💧💧💧💧💧💧💧💧
Previous article
Next article
Leave Comments
Post a Comment